3.2.32 \(\int \frac {1}{(a \sin (e+f x))^{3/2} \sqrt {b \tan (e+f x)}} \, dx\) [132]

Optimal. Leaf size=87 \[ -\frac {b \sqrt {a \sin (e+f x)}}{a^2 f (b \tan (e+f x))^{3/2}}-\frac {E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {a \sin (e+f x)}}{a^2 f \sqrt {\cos (e+f x)} \sqrt {b \tan (e+f x)}} \]

[Out]

-(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*(a*sin(f*x+e))^(1/2)/a^
2/f/cos(f*x+e)^(1/2)/(b*tan(f*x+e))^(1/2)-b*(a*sin(f*x+e))^(1/2)/a^2/f/(b*tan(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2679, 2681, 2719} \begin {gather*} -\frac {b \sqrt {a \sin (e+f x)}}{a^2 f (b \tan (e+f x))^{3/2}}-\frac {E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {a \sin (e+f x)}}{a^2 f \sqrt {\cos (e+f x)} \sqrt {b \tan (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a*Sin[e + f*x])^(3/2)*Sqrt[b*Tan[e + f*x]]),x]

[Out]

-((b*Sqrt[a*Sin[e + f*x]])/(a^2*f*(b*Tan[e + f*x])^(3/2))) - (EllipticE[(e + f*x)/2, 2]*Sqrt[a*Sin[e + f*x]])/
(a^2*f*Sqrt[Cos[e + f*x]]*Sqrt[b*Tan[e + f*x]])

Rule 2679

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[b*(a*Sin[e +
 f*x])^(m + 2)*((b*Tan[e + f*x])^(n - 1)/(a^2*f*(m + n + 1))), x] + Dist[(m + 2)/(a^2*(m + n + 1)), Int[(a*Sin
[e + f*x])^(m + 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && NeQ[m + n + 1, 0]
&& IntegersQ[2*m, 2*n]

Rule 2681

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[Cos[e + f*x]
^n*((b*Tan[e + f*x])^n/(a*Sin[e + f*x])^n), Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, b
, e, f, m, n}, x] &&  !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(-1)]) || IntegersQ[m - 1/2, n -
1/2])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin {align*} \int \frac {1}{(a \sin (e+f x))^{3/2} \sqrt {b \tan (e+f x)}} \, dx &=-\frac {b \sqrt {a \sin (e+f x)}}{a^2 f (b \tan (e+f x))^{3/2}}-\frac {\int \frac {\sqrt {a \sin (e+f x)}}{\sqrt {b \tan (e+f x)}} \, dx}{2 a^2}\\ &=-\frac {b \sqrt {a \sin (e+f x)}}{a^2 f (b \tan (e+f x))^{3/2}}-\frac {\sqrt {a \sin (e+f x)} \int \sqrt {\cos (e+f x)} \, dx}{2 a^2 \sqrt {\cos (e+f x)} \sqrt {b \tan (e+f x)}}\\ &=-\frac {b \sqrt {a \sin (e+f x)}}{a^2 f (b \tan (e+f x))^{3/2}}-\frac {E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {a \sin (e+f x)}}{a^2 f \sqrt {\cos (e+f x)} \sqrt {b \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.37, size = 89, normalized size = 1.02 \begin {gather*} -\frac {b \sqrt {a \sin (e+f x)} \left (2 \cos ^2(e+f x)^{3/4}+\, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {3}{2};\sin ^2(e+f x)\right ) \sin ^2(e+f x)\right )}{2 a^2 f \cos ^2(e+f x)^{3/4} (b \tan (e+f x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a*Sin[e + f*x])^(3/2)*Sqrt[b*Tan[e + f*x]]),x]

[Out]

-1/2*(b*Sqrt[a*Sin[e + f*x]]*(2*(Cos[e + f*x]^2)^(3/4) + Hypergeometric2F1[1/4, 1/2, 3/2, Sin[e + f*x]^2]*Sin[
e + f*x]^2))/(a^2*f*(Cos[e + f*x]^2)^(3/4)*(b*Tan[e + f*x])^(3/2))

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.38, size = 315, normalized size = 3.62

method result size
default \(-\frac {\left (i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticF \left (\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )-i \EllipticE \left (\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \cos \left (f x +e \right )+i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticF \left (\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right )-i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticE \left (\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right )+\cos \left (f x +e \right )\right ) \sin \left (f x +e \right )}{f \left (a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}}\, \cos \left (f x +e \right )}\) \(315\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin(f*x+e),I)*si
n(f*x+e)*cos(f*x+e)-I*EllipticE(I*(cos(f*x+e)-1)/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e
)+1))^(1/2)*sin(f*x+e)*cos(f*x+e)+I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(co
s(f*x+e)-1)/sin(f*x+e),I)*sin(f*x+e)-I*EllipticE(I*(cos(f*x+e)-1)/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(
f*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)+cos(f*x+e))*sin(f*x+e)/(a*sin(f*x+e))^(3/2)/(b*sin(f*x+e)/cos(f*x+e))^
(1/2)/cos(f*x+e)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sin(f*x + e))^(3/2)*sqrt(b*tan(f*x + e))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 168, normalized size = 1.93 \begin {gather*} \frac {2 \, \sqrt {a \sin \left (f x + e\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )^{2} + {\left (\sqrt {2} \cos \left (f x + e\right )^{2} - \sqrt {2}\right )} \sqrt {-a b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + {\left (\sqrt {2} \cos \left (f x + e\right )^{2} - \sqrt {2}\right )} \sqrt {-a b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{2 \, {\left (a^{2} b f \cos \left (f x + e\right )^{2} - a^{2} b f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/2*(2*sqrt(a*sin(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*cos(f*x + e)^2 + (sqrt(2)*cos(f*x + e)^2 - sqrt(
2))*sqrt(-a*b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) + (sqrt(2)*co
s(f*x + e)^2 - sqrt(2))*sqrt(-a*b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x
+ e))))/(a^2*b*f*cos(f*x + e)^2 - a^2*b*f)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))**(3/2)/(b*tan(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sin(f*x + e))^(3/2)*sqrt(b*tan(f*x + e))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {b\,\mathrm {tan}\left (e+f\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*sin(e + f*x))^(3/2)*(b*tan(e + f*x))^(1/2)),x)

[Out]

int(1/((a*sin(e + f*x))^(3/2)*(b*tan(e + f*x))^(1/2)), x)

________________________________________________________________________________________